Indian Statistical Institute, Bangalore

B. Math. (hons.) Third Year, Second Semester

Differential Equations
Semesteral Examination
Maximum marks: 50
Date : 28 April 2023
Time: 3 hours
Section I: Answer any four and each question carries 6 marks.

1. Solve $y^{\prime}+P(x) y=Q(x) y^{n}$, for $n=0,1,2, \cdots$.
2. Using variation of parameters method find a particular solution of the equation $y^{\prime \prime}+y=f(x)$ where f is a continuous function.
3. Let $f(x, y)$ be a continuous function such that $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$ on a strip defined by $a \leq x \leq b$ and $y \in \mathbb{R}$. If $\left(x_{0}, y_{0}\right)$ is any point of the strip, then the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ has a solution $y=y(x)$ on the interval $[a, b]$.
4. Solve $y^{\prime}=\left(1-x^{2}\right)^{\frac{-1}{2}}$ and use it to prove $\frac{\pi}{6}=\frac{1}{2}+\frac{1}{2} \frac{1}{3 \times 2^{3}}++\frac{1 \times 3}{2 \times 4} \frac{1}{5 \times 2^{5}}+\cdots$.
5. What is the relation between the function $\sqrt{x}\left[a J_{\frac{1}{3}}\left(\frac{2}{3} x^{\frac{3}{2}}\right)+b J_{\frac{-1}{3}}\left(\frac{2}{3} x^{\frac{3}{2}}\right)\right]$ and the general solution of $y^{\prime \prime}+x y=0$. Justify your answer.
6. Prove that a harmonic function has mean value property.

Section II: Answer any two and each question carries 13 marks.

1. (a) Solve $y d x+\left(x^{2} y-x\right) d y=0$ using integrating factor (Marks: 5).
(b) Solve $2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0$ by Frobenius method.
2. (a) Find all polynomial solutions of $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+4 y=0$.
(b) Can any polynomial be written as a sum of Legendre polynomials? Justify your answer (Marks: 7).
3. (a) State and prove maximum principle for a C^{2} - function u with $\Delta u \geq 0$.
(b) Solve $y u_{x}+x u_{y}+2 x y=0, u(s, 2 s)=2 s^{2}$ (Marks: 5).
